MoE 会成为未来大模型训练的新方向吗?
这是人们发现 MoE 架构可以用于大模型训练、推理后,发出的一声疑问。
MoE(Mixture of Experts),又称「混合专家」,本质是一种模块化的稀疏激活。怎么理解?
当前的大模型主要分为稠密(dense)模型与稀疏(sparse)模型,两者的区别主要在于模型进行计算时,被调用的参数数量,参数全部生效使用的是稠密模型,比如 OpenAI 从之一代到第三代即 GPT-1、 GPT-2、 GPT-3,以及 Meta 的 Llama 系列都是稠密模型;只使用其中一部分参数的是稀疏模型,比如基于 MoE 架构的模型,而这些被使用的参数称为「激活参数」。
具体从 *** 结构来看,目前主流的大模型大都是基于 Transformer 架构,由多个 Transformer Block 叠加组成,在每一个 Transformer Block 内部都会包括两层结构,一层是多头自注意力(Multi-Head Self-Attention),另一层是位置前馈神经 *** (Position-wise Feed-Forward Network,FFN)。MoE 做法是对 FFN 层进行横向扩展,将其中的参数细化、组织成一个又一个的组,每个组是一个专家(expert)。
基于此,对于特定输入,MoE 只需激活少数 expert,让其参数处于激活状态,从而实现稀疏激活。而具体激活哪些 expert、哪部分参数,MoE 还会引入一个Router(门控 *** 或路由),根据特定输入进行动态选择。
去年年底,Mistral AI开源了基于 MoE 架构的模型 Mixtral 8x7B,性能表现可达到与 GPT-3.5、 Llama2 70B 相媲美的程度,而推理时只消耗了一个 13B 级别的稠密模型计算量——这一度让业内人士对 MoE 架构在大模型研究中的潜力充满了想象。
居然有这样一个架构,可以让 AI 模型在增大参数规模的同时,计算成本远低于相同参数规模的稠密模型,实现高效训练。这在 Scaling Law 仍被奉为 LLM 之一性原理的当下,简直是「大力出奇迹」的不二工具。
紧接着,国内外大模型从业者相继推出基于 MoE 架构的大模型:
今年 1 月,MiniMax发布基于 MoE 架构的大语言模型 abab6;
2月,昆仑万维正式发布新版 MoE 大语言模型「天工 2.0」;
3月,马斯克创办的xAI宣布开源基于 MoE 架构的大模型 Grok-1,新晋大模型独角兽阶跃星辰发布 Step-2 万亿参数 MoE 语言大模型预览版,阿里通义千问团队开源首个 MoE 模型——Qwen1.5-MoE-A2.7B;
4月,元象科技发布 XVERSE-MoE-A4.2B 大模型,面壁智能推出 MiniCPM-MoE-8x2B MoE 模型;
5月,DeepSeek AI 开源 MoE 语言模型 DeepSeek-V2,在一些任务表现中成为目前最强的开源 MoE 语言模型……
越来越多的玩家开始选择 MoE。为此,AI 科技评论走访了多位国内 MoE 专业人员。我们发现,MoE 的未来或尚未可知,但在当下,MoE 是大多数企业在忠于 Scaling Law 这一定律下必然要做出的选择。
1.MoE 是算力匮乏的「产物」
MoE 并非新生事物。作为一种统计学架构,MoE 早在 1997 年就被提出,后来,随着机器学习等人工智能技术的兴起,MoE 的思想也随着深度学习的发展一路演进,在2017年时,就已经有专家学者在 LSTM 模型上运用 MoE *** 并取得了成功。
而意识到 MoE 可以用于大模型的训练,很多人是从去年年底 Mistral AI 开源了首个 MoE 架构模型开始的,但对于很多研究 MoE 的学者来说,Mistral AI 的开源更是 MoE 的一次成功实践,让大家对 MoE 的感知从原先的理论到实际效果的转变。
实际早在去年 6 月份,在一次访谈中,就有人声称 OpenAI 的 GPT-4 是一个 8x220B 的 MoE 模型。只不过彼时大模型在国内才刚刚起步,大家对基础模型的训练技术不太成熟,对 MoE 感知不够,一阵喧哗之后讨论声渐渐消散,不过也正是这一次让更多业内人士开始意识到 MoE 的价值。
阶跃星辰算法专家告诉雷峰网,当初社区传言 OpenAI 的 GPT-4 是 MoE 架构时,他们并不感到意外,甚至能根据经验猜测它的大部分架构细节。
元象XVERSE技术合伙人、大模型算法负责人轩文烽也表示,在更早之前,2021 年初 Google 在 arXiv上 发表了一篇论文《Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity》后,他们就开始了解到 MoE,同年国内的阿里正在研发 M6 模型,在这方面也有跟进。「而 Mistral AI 的开源,直接让它的实际效果呈现得更明显,之后,去年 12 月元象XVERSE开始策划训练 MoE 大模型。」
诚然,MoE 作为一种模块化的稀疏激活,可以在模型总参数量不变的情况下,大幅降低计算总量,高效计算、降低成本。这是 MoE 最为显著的优势,也是为什么它作为一个并不「新鲜」的技术又在此时此刻重新焕发活力的原因所在。
现在的大模型越来越大了。Scaling Law 带来的启示是模型越大,性能越强,可是模型迭代离不开高效的算力支持,而算力的不足和匮乏,行业周知。
稀疏化包括 MoE 技术为这一问题提供了解法——它可以增大模型的参数规模,但是它的计算成本又要远低于相同参数规模的稠密模型。
面壁智能研究员宋晨阳告诉雷峰网,在目前算力,特别是国内算力普遍比较有限的情况下,MoE 架构是一个必然的趋势和选择。
面壁智能与 MoE 渊源颇深。早在 2021 年 6 月,清华大学刘知远教授牵头的「悟道·文源」就发布了千亿 MoE 大模型 CPM-2 ,是国内最早关注到这一问题的 AI 团队之一,而其中的参与成员就包括面壁智能的初始团队。因着这一自带的基因,面壁智能一直在关注和研究 MoE 和稀疏化。
同样坚信 Scaling Law 的阶跃星辰在完成千亿模型的训练后,开始训练万亿模型。而想把模型参数扩大到万亿,MoE 是在性能、参数量、训练成本、推理成本这些维度权衡下的更佳选择。
具体来看,MoE 模型的优势主要体现为专家化、动态化、稀疏化。
一是具有更强的表现力:MoE 架构融合多个各有所长的专家模型,既有分工,又有合作,能够动态地适应不同输入样本的特点,提高模型的表达能力。
二是训练和推理速度更快:相比于同参数的稠密模型架构,MoE 是稀疏的,训练的时候计算量更小,推理的时候同时激活的参数量更小,因此能够更高效地利用计算资源。
2.路径抉择不一
目前,市场上选择 MoE 架构的大模型厂商越来越多,大家做得也都大同小异,但在架构细节上还有很多值得琢磨的地方,业界也没有达成共识,比如总共需要多少个 expert(2个到128个)、选择激活多少个 expert、需不需要有固定共享 expert、选择 expert 的时候该怎么做均衡等,各家都会不太一样。
一般来说,现在的 MoE 路径选择主要分为两种——基于一个已有模型开始训练,还是从头开始训练。
基于已有模型开始训练,是通过一个众所周知的取巧方案——upcycle(向上复用)进行的。具体来说,是将一个已经训练好的大模型的前馈神经 *** 权重复制若干份,每一份作为一个 expert,然后组合在一起,这样就可以把一个非 MoE 模型变成一个 MoE 模型,参数量很快就能变得特别大,但算力需求会小几个量级。
宋晨阳告诉雷峰网(公众号:雷峰网),「这种 *** 的更大优势在于可以节省很多成本,因为初始模型就有很多知识。」但同时,这样也存在很大的弊端,比如基于拷贝复制得到的 MoE 模型,expert 之间会有很多知识重叠,权重、参数的冗余导致对各 expert 的支持是重叠的,如果做得不好,就不能充分发挥 MoE 架构的潜力,是一个很具考验性的路径。
那如果从头开始训练的话,虽然训练起来会更难,但上述问题会有所缓解,且它的自由度更高,避免传统 MoE 架构模型的潜在问题,争取达到 MoE 架构模型的上限。
目前,大多数厂商选择的是基于已有模型进行训练,像是 Mistral AI 的 Mixtral 系列模型、千问的 MoE 模型 Qwen1.5-MoE-A2.7B、面壁智能的 MiniCPM-MoE-8x2B 等。而从论文来看,DeepSeek 选择的是从头开始训练,前段时间 DeepSeek-V2 一经开源发布,引起了非常大的反响。
阶跃星辰的做法是,一方面选择完全从头开始训练,保持万亿参数在整个训练过程中都不变,充分发挥 MoE 架构的潜力,另一方面在前期做好准备工作,从众多方案中选择更为靠谱的架构配置。
除此之外,还有一个大家会有分歧的问题,就是 MoE 架构的 expert 的力度应该是粗还是细?以及应不应该有固定共享 expert?
举例来说,Mistrial AI 的 8x7B 是一个经典的 MoE 架构,有 8 个 expert ,每个 expert 都是完全一样的形状,然后用 router *** 去从 8 个 expert 里面选择 2 个 expert。但是千问和 DeepSeek 采用了不同的做法,特别是 DeepSeek 把 expert 的粒度切得更细,同时还引入共享 expert。
换句话说,好比原本是从 8 个 expert 中只能选 2 个,那组合数为 C8 2,但是如果把这 8 个 expert 每个再分别切成 8 个,就得到 64 个 expert,然后从 64 个 expert 中去选择 8 个,组合数就达到了 C64 8。这样一来,模型可选择的组合大大增多,模型的表达能力也就会有所增强。
宋晨阳认为,这是 DeepSeek MoE 模型的一大创新之处。
对此,轩文烽也告诉雷峰网,在 expert 的选择上,元象XVERSE 也没有使用传统的 MoE 架构做法——类 Mistral AI 的选择,每个 expert 等同于标准的 FFN——而是用了一些更细颗粒度的 *** ,将 expert 的设计设置为标准 FFN 的 1/ 4,而之所以做出这个选择,是在训练过程中,根据多次实验预测结果得出的结论,另外他们也在密切关注目前业界的 FFN 的配比方案。
另外,DeepSeek 还引入了共享 expert,前面提到,如果像 Mistral AI 那样从一个已有的稠密模型基于 upcycle,得到的 MoE 模型存在一个问题,即每个 expert 在初始化的时候完全一样,彼此之间不可避免会有很多知识的重叠,最后参数将是冗余的。而 DeepSeek 的策略是把每个 expert 重叠的知识用共享 expert 单独拿出来表示,共享 expert 对于每一个给定的输入 token 不经过 router *** 直接固定激活,然后再对其他剩下不共享的 expert 中,用 router *** 去选择要激活的部分。
基于此,宋晨阳认为,目前市面上的 MoE 模型又分为两个流派,一种就是类似 Mistrial AI的传统 MoE 流派,还另外就是千问和 DeepSeek MoE 这种 expert 切分更细、设置共享 expert 的架构。
至于哪种会成为主流,其实并没有具体的答案,因为一个模型最后表现有多好,架构还真不一定是最重要的事情,影响因素很多,比如数据,包括哪些类型的数据、数据如何清洗、如何配比组织,以及最终训练时,原始数据如何切分成一个又一个的 token,等等。不同的选择都将通往不同的答案。
当前,面壁智能的 MiniCPM-MoE-8x2B 采用的是类似 Mistral AI 的模型架构。考虑到未来面壁智能的最终目标是要将端侧模型做到极致,送到每一部手机、每一个用户手上。所以,当下他们也在讨论,包括做一些实验,来决定设计怎样更适合加速的 MoE 架构,从而做出最终路径选择。
3.MoE「终究是一门妥协的艺术」
当前,随着入局玩家的增多,MoE 似乎正逐渐成为一种行业共识,那么,MoE 会是未来 AI 的方向吗?
对此,众说纷纭,信奉它的人认为,它可以实现同等参数规模下算力的大幅降低,在 Scaling Law 仍未失效的当下,无疑是更优解。
但不看好的也大有人在。
今年 4 月底,Meta 官宣了 Llama 3,总共有三个版本——8B、70B 和 400B+。其中,8B 和 70B 版本已经开源,而 400B+ 版本仍在训练中。CEO 扎克伯格在访谈提到,Llama 3 400B+ 将是一个稠密模型。面对如此大的参数量,仍然选择稠密模型,或许表明,Meta 不相信稀疏化,「拒绝」了 MoE 架构。
其实,即便是那些选择了 MoE 架构的玩家,也不得不承认,虽然有着高效训练、灵活性和可解释性的优点,MoE 的局限性仍然明显,是「一门妥协的艺术」。
宋晨阳表示,MoE 的好处在于算力有限的情况下,可以实现同等参数规模下,计算量的大幅降低。但如果有足够的算力,训练一个 MoE 模型和同等参数量的稠密模型,就性能来说,一定是稠密模型更好。
也就是说,同等参数规模下,稠密模型的表现要优胜于 MoE 模型。这是因为,本质上 FFN 的表达能力是不受限的,但 MoE 模型为了稀疏激活,强行规定只能激活被切细后的一部分 FFN,相当于把模型的整个可表示空间给缩小了。
另外,无论是 MoE 还是整个稀疏化,都有一个「致命」问题,就是目前并没有一个特别有效的 *** 能够降低它们的存储消耗。比如对于一个 7B 模型来说,可以把它做成稀疏架构,使其计算量小于 7B,但它的内存消耗还是一个 7B 的规模,这会导致在实际将其部署在端侧的时候,出现问题。
轩文烽也表示,MoE 现在的高效训练等优势其实就是通过显存换效果。虽然 MoE 不像稠密模型那样,参数增大后训练、推理成本都会显著增加,但对于一个用 4.2B 的激活参数量达到 13B 效果的 MoE 模型来说,推理成本是低了些,但是显存的占用并没有变化。
因此,「如何优化显存方面的问题,同时保持它这种获得更高效果的性价比,可能是需要行业去研究的。」
另外,一位从事 MoE 模型训练的研究员也感慨,在实际训练中,MoE 架构模型确实存在一些挑战。
比如,训练和推理难度大,万亿的 MoE 架构需要将各专家放在不同的计算节点上,会引入额外的并行维度和 *** 通信,专家之间的不平衡性会拖累整个系统的训练、推理效率,极端情况下可能会浪费 50% 以上的集群算力;参数利用率不高,每个专家都必须成为一定程度上的「通才」,消耗很多的参数量学习共有的基础知识,在此基础上才能有所「专精」,因此相同参数量的 MoE 模型往往比不过传统稠密模型。
但这些从业者也纷纷向雷峰网坦言,即便如此,就当下的实际情况而言,MoE 肯定是一个非常有希望的做法、必然的趋势。
或许,在算力足够的理想状态下,没有必要非得用 MoE 架构,但在算力依旧短缺的现在,无法设想那个不存在的未来。当然,如果我们把目光放得长远些,十年或二十年后,技术持续发展,硬件和计算框架不再成为短板,到底想要使用什么样的架构训练大模型,会更自由些。
而在当下这个明确而具体的时间点,从业者能做的就是基于 MoE 架构现有的一些技术挑战,以及可优化空间,尽量进行可能性的改进,使它的训练更高效、性能更好。
比如,如何为 MoE 设计一个更好的加速框架?MoE 模型并不是一个特别好加速的模型,因为有很多 expert ,这些 expert 如何部署,是把每个 expert 部署在不同的卡上,还是把它们切片以后进行平行、分布式部署在多张卡上,等等。
再比如,目前关于 MoE 大模型似乎开始出现一个趋势,就是当大家都在争着把大模型的参数量做得越来越大时,性能却并没有因此变好,甚至没有参数量更小的模型好。一组对比是,参数量为 314B 亿的 Grok-1 与 Mistral AI 的 8x7B 模型性能相当,这是为什么?
对此,宋晨阳认为其中一个核心原因是 Mistral AI 的数据质量更高。Scaling Law 能够成立的前提,是要有充足的高质量数据作为保证。对于同样的模型架构、同样的参数量来说,数据质量比较高的那个模型,可以用比较少的数据量达到相同的效果。
另外,除了数据,另一个决定模型性能因素是训练技巧,包括批次大小等调度,都非常有讲究,但目前这些在行业中,很多已经做得非常好的头部厂商「羞于」展示,需要更多的从业者不断实践,获得更多的经验来探索更好、更优的方式。当然,也有一些厂商敢于「逆行」,如面壁智能的 MiniCPM-2B 在发布的同时,于技术报告中详细描述了如批次大小调度、学习率调度、词表大小选取等细节问题,为学界和业界提供了可参考的经验。
比如轩文烽在总结 XVERSE-MoE-A4.2B 大模型的研发经验时觉得,如果再重新来一遍,可能会做得更快些,实验计划会设计得更紧凑些。
虽然,大家都想找到一个更优的解决方案,将大模型训练、推理得又快又好,但不可否认,技术探索没有边界,没有更优、只有更优。
MoE 包括稀疏化未必代表 AI 的未来,但它提供了丰富的想象空间。比如,是不是可以朝着更为稀疏的方向走去,将 expert 切得更细,细到极限,如实现神经元级别的稀疏激活,那又将会带来怎样的效果?
这是一个非常有前景、值得探索的方向。
发表评论
2024-06-10 12:27:11回复
2024-06-10 12:28:15回复
2024-09-09 15:58:52回复
2024-09-09 16:01:50回复